Result.MakeMake(E)(M) concretized the type of error to E.t and composes the Result monad with the monad M.
include Trans.S
with type 'a t := 'a T1(T)(M).t
with type 'a m := 'a T1(T)(M).m
with type 'a e := 'a T1(T)(M).eval lift : 'a T1(T)(M).m -> 'a T1(T)(M).tlifts inner monad into the resulting monad
val run : 'a T1(T)(M).t -> 'a T1(T)(M).eruns the computation
include Monad with type 'a t := 'a T1(T)(M).tval void : 'a T1(T)(M).t -> unit T1(T)(M).tvoid m computes m and discrards the result.
val sequence : unit T1(T)(M).t list -> unit T1(T)(M).tsequence xs computes a sequence of computations xs in the left to right order.
val forever : 'a T1(T)(M).t -> 'b T1(T)(M).tforever xs creates a computationt that never returns.
module Fn : sig ... endVarious function combinators lifted into the Kleisli category.
module Pair : sig ... endThe pair interface lifted into the monad.
module Triple : sig ... endThe triple interface lifted into a monad.
module Lift : sig ... endLifts functions into the monad.
module Exn : sig ... endInteracting between monads and language exceptions
module Collection : sig ... endLifts collection interface into the monad.
module List : Collection.S with type 'a t := 'a listThe Monad.Collection.S interface for lists
module Seq : Collection.S with type 'a t := 'a Core_kernel.Sequence.tThe Monad.Collection.S interface for sequences
include Syntax.S with type 'a t := 'a T1(T)(M).tval (>=>) :
('a -> 'b T1(T)(M).t) ->
('b -> 'c T1(T)(M).t) ->
'a ->
'c T1(T)(M).tf >=> g is fun x -> f x >>= g
val (!!) : 'a -> 'a T1(T)(M).t!!x is return x
val (!$) : ('a -> 'b) -> 'a T1(T)(M).t -> 'b T1(T)(M).t!$f is Lift.unary f
val (!$$) : ('a -> 'b -> 'c) -> 'a T1(T)(M).t -> 'b T1(T)(M).t -> 'c T1(T)(M).t!$$f is Lift.binary f
val (!$$$) :
('a -> 'b -> 'c -> 'd) ->
'a T1(T)(M).t ->
'b T1(T)(M).t ->
'c T1(T)(M).t ->
'd T1(T)(M).t!$$$f is Lift.ternary f
val (!$$$$) :
('a -> 'b -> 'c -> 'd -> 'e) ->
'a T1(T)(M).t ->
'b T1(T)(M).t ->
'c T1(T)(M).t ->
'd T1(T)(M).t ->
'e T1(T)(M).t!$$$$f is Lift.quaternary f
val (!$$$$$) :
('a -> 'b -> 'c -> 'd -> 'e -> 'f) ->
'a T1(T)(M).t ->
'b T1(T)(M).t ->
'c T1(T)(M).t ->
'd T1(T)(M).t ->
'e T1(T)(M).t ->
'f T1(T)(M).t!$$$$$f is Lift.quinary f
include Syntax.Let.S with type 'a t := 'a T1(T)(M).tval let* : 'a T1(T)(M).t -> ('a -> 'b T1(T)(M).t) -> 'b T1(T)(M).tlet* r = f x in b is f x >>= fun r -> b
val and* : 'a T1(T)(M).t -> 'b T1(T)(M).t -> ('a * 'b) T1(T)(M).tmonoidal product
val let+ : 'a T1(T)(M).t -> ('a -> 'b) -> 'b T1(T)(M).tlet+ r = f x in b is f x >>| fun r -> b
val and+ : 'a T1(T)(M).t -> 'b T1(T)(M).t -> ('a * 'b) T1(T)(M).tmonoidal product
include Core_kernel.Monad.S with type 'a t := 'a T1(T)(M).tval (>>=) : 'a T1(T)(M).t -> ('a -> 'b T1(T)(M).t) -> 'b T1(T)(M).tval (>>|) : 'a T1(T)(M).t -> ('a -> 'b) -> 'b T1(T)(M).tmodule Monad_infix : sig ... endval bind : 'a T1(T)(M).t -> f:('a -> 'b T1(T)(M).t) -> 'b T1(T)(M).tval return : 'a -> 'a T1(T)(M).tval map : 'a T1(T)(M).t -> f:('a -> 'b) -> 'b T1(T)(M).tval join : 'a T1(T)(M).t T1(T)(M).t -> 'a T1(T)(M).tval ignore_m : 'a T1(T)(M).t -> unit T1(T)(M).tval all : 'a T1(T)(M).t list -> 'a list T1(T)(M).tval all_unit : unit T1(T)(M).t list -> unit T1(T)(M).tmodule Let_syntax : sig ... endmodule Let : Syntax.Let.S with type 'a t := 'a T1(T)(M).tMonadic operators, see Monad.Syntax.S for more.
module Syntax : Syntax.S with type 'a t := 'a T1(T)(M).tMonadic operators, see Monad.Syntax.S for more.
include Fail.S with type 'a t := 'a T1(T)(M).t with type 'a error = T.tval fail : _ error -> 'a T1(T)(M).tfail err diverges the computation, possibly providing an extra information in a value of type _ error.
val catch : 'a T1(T)(M).t -> (_ error -> 'a T1(T)(M).t) -> 'a T1(T)(M).tcatch m f if m diverges with some bottom value err, the f err is a result of the whole computation, otherwise returns m.