# Module `Monad.Minimal2`

`Minimal2(M)` derives Monad.S2 from the Minimal implementation

## Parameters

`module M : Minimal2`

## Signature

`type ('a, 'e) t = ('a, 'e) M.t`
`val void : ('a, 'e) t -> (unit, 'e) t`

`void m` computes `m` and discrards the result.

`val sequence : (unit, 'e) t list -> (unit, 'e) t`

`sequence xs` computes a sequence of computations `xs` in the left to right order.

`val forever : ('a, 'e) t -> ('b, 'e) t`

`forever xs` creates a computationt that never returns.

`module Fn : sig ... end`

Various function combinators lifted into the Kleisli category.

`module Pair : sig ... end`

The pair interface lifted into the monad.

`module Triple : sig ... end`

The triple interface lifted into a monad.

`module Lift : sig ... end`

`module Exn : sig ... end`

Interacting between monads and language exceptions

`module Collection : sig ... end`

Lifts collection interface into the monad.

`module List : Collection.S with type 'a t := 'a list`

`module Seq : Collection.S with type 'a t := 'a Core_kernel.Sequence.t`

`include Syntax.S2 with type ('a, 'e) t := ('a, 'e) t`
`val (>=>) : ('a -> ('b, 'e) t) -> ('b -> ('c, 'e) t) -> 'a -> ('c, 'e) t`

`f >=> g` is `fun x -> f x >>= g`

`val (!!) : 'a -> ('a, 'e) t`

`!!x` is `return x`

`val (!\$) : ('a -> 'b) -> ('a, 'e) t -> ('b, 'e) t`

`!\$f` is `Lift.unary f`

`val (!\$\$) : ('a -> 'b -> 'c) -> ('a, 'e) t -> ('b, 'e) t -> ('c, 'e) t`

`!\$\$f` is `Lift.binary f`

```val (!\$\$\$) : ('a -> 'b -> 'c -> 'd) -> ('a, 'e) t -> ('b, 'e) t -> ('c, 'e) t -> ('d, 'e) t```

`!\$\$\$f` is `Lift.ternary f`

```val (!\$\$\$\$) : ('a -> 'b -> 'c -> 'd -> 'e) -> ('a, 's) t -> ('b, 's) t -> ('c, 's) t -> ('d, 's) t -> ('e, 's) t```

`!\$\$\$\$f` is `Lift.quaternary f`

```val (!\$\$\$\$\$) : ('a -> 'b -> 'c -> 'd -> 'e -> 'f) -> ('a, 's) t -> ('b, 's) t -> ('c, 's) t -> ('d, 's) t -> ('e, 's) t -> ('f, 's) t```

`!\$\$\$\$\$f` is `Lift.quinary f`

`include Syntax.Let.S2 with type ('a, 'e) t := ('a, 'e) t`
`val let* : ('a, 'e) t -> ('a -> ('b, 'e) t) -> ('b, 'e) t`

`let* r = f x in b` is `f x >>= fun r -> b`

`val and* : ('a, 'e) t -> ('b, 'e) t -> ('a * 'b, 'e) t`

monoidal product

`val let+ : ('a, 'e) t -> ('a -> 'b) -> ('b, 'e) t`

`let+ r = f x in b` is `f x >>| fun r -> b`

`val and+ : ('a, 'e) t -> ('b, 'e) t -> ('a * 'b, 'e) t`

monoidal product

`include Core_kernel.Monad.S2 with type ('a, 'e) t := ('a, 'e) t`
`val (>>=) : ('a, 'e) t -> ('a -> ('b, 'e) t) -> ('b, 'e) t`
`val (>>|) : ('a, 'e) t -> ('a -> 'b) -> ('b, 'e) t`
`module Let_syntax : sig ... end`
`module Monad_infix : sig ... end`
`val bind : ('a, 'e) t -> f:('a -> ('b, 'e) t) -> ('b, 'e) t`
`val return : 'a -> ('a, 'b) t`
`val map : ('a, 'e) t -> f:('a -> 'b) -> ('b, 'e) t`
`val join : (('a, 'e) t, 'e) t -> ('a, 'e) t`
`val ignore_m : ('a, 'e) t -> (unit, 'e) t`
`val all : ('a, 'e) t list -> ('a list, 'e) t`
`val all_unit : (unit, 'e) t list -> (unit, 'e) t`
`module Let : Syntax.Let.S2 with type ('a, 'e) t := ('a, 'e) t`

`module Syntax : Syntax.S2 with type ('a, 'e) t := ('a, 'e) t`