Module Monad.Ident

The identity monad.

The identity monad represents a computation that has the same semantics as a host language computation. The provided implementation is not derived via some functor but rather manually written to help optimizer to inline the identity monad and actually to provide code that is as efficient as the same code written without a monad.

type 'a t = 'a
val void : 'a t -> unit t

void m computes m and discrards the result.

val sequence : unit t list -> unit t

sequence xs computes a sequence of computations xs in the left to right order.

val forever : 'a t -> 'b t

forever xs creates a computationt that never returns.

module Fn : sig ... end

Various function combinators lifted into the Kleisli category.

module Pair : sig ... end

The pair interface lifted into the monad.

module Triple : sig ... end

The triple interface lifted into a monad.

module Lift : sig ... end

Lifts functions into the monad.

module Exn : sig ... end

Interacting between monads and language exceptions

module Collection : sig ... end

Lifts collection interface into the monad.

module List : Collection.S with type 'a t := 'a list

The Monad.Collection.S interface for lists

module Seq : Collection.S with type 'a t := 'a Core_kernel.Sequence.t

The Monad.Collection.S interface for sequences

include Syntax.S with type 'a t := 'a t
val (>>=) : 'a t -> ( 'a -> 'b t ) -> 'b t

m >>= f is bind m f

val (>>|) : 'a t -> ( 'a -> 'b ) -> 'b t

m >>= f is map m ~f

val (>=>) : ( 'a -> 'b t ) -> ( 'b -> 'c t ) -> 'a -> 'c t

f >=> g is fun x -> f x >>= g

val (!!) : 'a -> 'a t

!!x is return x

val (!$) : ( 'a -> 'b ) -> 'a t -> 'b t

!$f is Lift.unary f

val (!$$) : ( 'a -> 'b -> 'c ) -> 'a t -> 'b t -> 'c t

!$$f is Lift.binary f

val (!$$$) : ( 'a -> 'b -> 'c -> 'd ) -> 'a t -> 'b t -> 'c t -> 'd t

!$$$f is Lift.ternary f

val (!$$$$) : ( 'a -> 'b -> 'c -> 'd -> 'e ) -> 'a t -> 'b t -> 'c t -> 'd t -> 'e t

!$$$$f is Lift.quaternary f

val (!$$$$$) : ( 'a -> 'b -> 'c -> 'd -> 'e -> 'f ) -> 'a t -> 'b t -> 'c t -> 'd t -> 'e t -> 'f t

!$$$$$f is Lift.quinary f

include Syntax.Let.S with type 'a t := 'a t
val let* : 'a t -> ( 'a -> 'b t ) -> 'b t

let* r = f x in b is f x >>= fun r -> b

val and* : 'a t -> 'b t -> ('a * 'b) t

monoidal product

val let+ : 'a t -> ( 'a -> 'b ) -> 'b t

let+ r = f x in b is f x >>| fun r -> b

val and+ : 'a t -> 'b t -> ('a * 'b) t

monoidal product

include Core_kernel.Monad.S with type 'a t := 'a t
val (>>=) : 'a t -> ( 'a -> 'b t ) -> 'b t
val (>>|) : 'a t -> ( 'a -> 'b ) -> 'b t
module Monad_infix : sig ... end
val bind : 'a t -> f:( 'a -> 'b t ) -> 'b t
val return : 'a -> 'a t
val map : 'a t -> f:( 'a -> 'b ) -> 'b t
val join : 'a t t -> 'a t
val ignore_m : 'a t -> unit t
val all : 'a t list -> 'a list t
val all_unit : unit t list -> unit t
module Let_syntax : sig ... end
module Let : Syntax.Let.S with type 'a t := 'a t

Monadic operators, see Monad.Syntax.S for more.

module Syntax : Syntax.S with type 'a t := 'a t

Monadic operators, see Monad.Syntax.S for more.