Cont.Make
Make(T)(M)
wraps the monad M
into the continuation monad and fix the type of the whole computation to T.t
include Trans.S
with type 'a t := 'a T1(T)(M).t
with type 'a m := 'a T1(T)(M).m
with type 'a e := 'a T1(T)(M).e
val lift : 'a T1(T)(M).m -> 'a T1(T)(M).t
lifts inner monad into the resulting monad
val run : 'a T1(T)(M).t -> 'a T1(T)(M).e
runs the computation
include Monad with type 'a t := 'a T1(T)(M).t
val void : 'a T1(T)(M).t -> unit T1(T)(M).t
void m
computes m
and discrards the result.
val sequence : unit T1(T)(M).t list -> unit T1(T)(M).t
sequence xs
computes a sequence of computations xs
in the left to right order.
val forever : 'a T1(T)(M).t -> 'b T1(T)(M).t
forever xs
creates a computationt that never returns.
module Fn : sig ... end
Various function combinators lifted into the Kleisli category.
module Pair : sig ... end
The pair interface lifted into the monad.
module Triple : sig ... end
The triple interface lifted into a monad.
module Lift : sig ... end
Lifts functions into the monad.
module Exn : sig ... end
Interacting between monads and language exceptions
module Collection : sig ... end
Lifts collection interface into the monad.
module List : Collection.S with type 'a t := 'a list
The Monad.Collection.S interface for lists
module Seq : Collection.S with type 'a t := 'a Core_kernel.Sequence.t
The Monad.Collection.S interface for sequences
include Syntax.S with type 'a t := 'a T1(T)(M).t
val (>=>) :
('a -> 'b T1(T)(M).t) ->
('b -> 'c T1(T)(M).t) ->
'a ->
'c T1(T)(M).t
f >=> g
is fun x -> f x >>= g
val (!!) : 'a -> 'a T1(T)(M).t
!!x
is return x
val (!$) : ('a -> 'b) -> 'a T1(T)(M).t -> 'b T1(T)(M).t
!$f
is Lift.unary f
val (!$$) : ('a -> 'b -> 'c) -> 'a T1(T)(M).t -> 'b T1(T)(M).t -> 'c T1(T)(M).t
!$$f
is Lift.binary f
val (!$$$) :
('a -> 'b -> 'c -> 'd) ->
'a T1(T)(M).t ->
'b T1(T)(M).t ->
'c T1(T)(M).t ->
'd T1(T)(M).t
!$$$f
is Lift.ternary f
val (!$$$$) :
('a -> 'b -> 'c -> 'd -> 'e) ->
'a T1(T)(M).t ->
'b T1(T)(M).t ->
'c T1(T)(M).t ->
'd T1(T)(M).t ->
'e T1(T)(M).t
!$$$$f
is Lift.quaternary f
val (!$$$$$) :
('a -> 'b -> 'c -> 'd -> 'e -> 'f) ->
'a T1(T)(M).t ->
'b T1(T)(M).t ->
'c T1(T)(M).t ->
'd T1(T)(M).t ->
'e T1(T)(M).t ->
'f T1(T)(M).t
!$$$$$f
is Lift.quinary f
include Syntax.Let.S with type 'a t := 'a T1(T)(M).t
val let* : 'a T1(T)(M).t -> ('a -> 'b T1(T)(M).t) -> 'b T1(T)(M).t
let* r = f x in b
is f x >>= fun r -> b
val and* : 'a T1(T)(M).t -> 'b T1(T)(M).t -> ('a * 'b) T1(T)(M).t
monoidal product
val let+ : 'a T1(T)(M).t -> ('a -> 'b) -> 'b T1(T)(M).t
let+ r = f x in b
is f x >>| fun r -> b
val and+ : 'a T1(T)(M).t -> 'b T1(T)(M).t -> ('a * 'b) T1(T)(M).t
monoidal product
include Core_kernel.Monad.S with type 'a t := 'a T1(T)(M).t
val (>>=) : 'a T1(T)(M).t -> ('a -> 'b T1(T)(M).t) -> 'b T1(T)(M).t
val (>>|) : 'a T1(T)(M).t -> ('a -> 'b) -> 'b T1(T)(M).t
module Monad_infix : sig ... end
val bind : 'a T1(T)(M).t -> f:('a -> 'b T1(T)(M).t) -> 'b T1(T)(M).t
val return : 'a -> 'a T1(T)(M).t
val map : 'a T1(T)(M).t -> f:('a -> 'b) -> 'b T1(T)(M).t
val join : 'a T1(T)(M).t T1(T)(M).t -> 'a T1(T)(M).t
val ignore_m : 'a T1(T)(M).t -> unit T1(T)(M).t
val all : 'a T1(T)(M).t list -> 'a list T1(T)(M).t
val all_unit : unit T1(T)(M).t list -> unit T1(T)(M).t
module Let_syntax : sig ... end
module Let : Syntax.Let.S with type 'a t := 'a T1(T)(M).t
Monadic operators, see Monad.Syntax.S for more.
module Syntax : Syntax.S with type 'a t := 'a T1(T)(M).t
Monadic operators, see Monad.Syntax.S for more.
val call : f:(cc:('a -> _ T1(T)(M).t) -> 'a T1(T)(M).t) -> 'a T1(T)(M).t
call ~f
calls f ~cc
with the current continuation cc
.
The call ~f
computation may be computed more than once, i.e., it would be resumed every time the continuation is invoked. The captured continuation represents the computation around the call
. Thus invoking this computation will effectively escape the f
function (discarding the consequent computations) and continue with a computation that follows the call
. The continuation is multi-shot, in the sense that it can be called (resumed) multiple times (or not called at all). Every time it is called, the computation will resume at the same point, thus a computation that contains the call
can be seen as a reenterable computation, and the call
itself marks the entry point, and the continuation acts like a key that allows any computation that has it to reenter the subroutine at this point.